Copied to
clipboard

G = C7×D8⋊C22order 448 = 26·7

Direct product of C7 and D8⋊C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C7×D8⋊C22, C56.51C23, C28.84C24, C4○D83C14, D84(C2×C14), C8⋊C226C14, Q164(C2×C14), C4.68(D4×C14), (C2×C56)⋊30C22, SD163(C2×C14), (C2×C28).527D4, C28.473(C2×D4), (C7×D8)⋊20C22, C8.C226C14, C4.7(C23×C14), C8.2(C22×C14), C23.20(C7×D4), (D4×C14)⋊67C22, M4(2)⋊5(C2×C14), (C2×M4(2))⋊5C14, (C7×Q16)⋊18C22, (Q8×C14)⋊56C22, (C7×D4).37C23, D4.4(C22×C14), C22.25(D4×C14), (C22×C14).38D4, (C7×Q8).38C23, Q8.4(C22×C14), (C14×M4(2))⋊15C2, (C2×C28).686C23, (C7×SD16)⋊19C22, C14.205(C22×D4), (C7×M4(2))⋊31C22, (C22×C28).467C22, (C2×C8)⋊3(C2×C14), C2.29(D4×C2×C14), C4○D45(C2×C14), (C7×C4○D8)⋊10C2, (C14×C4○D4)⋊28C2, (C2×C4○D4)⋊12C14, (C2×D4)⋊16(C2×C14), (C7×C8⋊C22)⋊13C2, (C2×Q8)⋊16(C2×C14), (C2×C4).138(C7×D4), (C2×C14).421(C2×D4), (C7×C4○D4)⋊25C22, (C7×C8.C22)⋊13C2, (C2×C4).47(C22×C14), (C22×C4).78(C2×C14), SmallGroup(448,1358)

Series: Derived Chief Lower central Upper central

C1C4 — C7×D8⋊C22
C1C2C4C28C7×D4C7×D8C7×C8⋊C22 — C7×D8⋊C22
C1C2C4 — C7×D8⋊C22
C1C28C22×C28 — C7×D8⋊C22

Generators and relations for C7×D8⋊C22
 G = < a,b,c,d,e | a7=b8=c2=d2=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, dbd=b5, be=eb, dcd=ece=b4c, de=ed >

Subgroups: 402 in 262 conjugacy classes, 158 normal (22 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C14, C14, C2×C8, M4(2), D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C28, C28, C28, C2×C14, C2×C14, C2×C14, C2×M4(2), C4○D8, C8⋊C22, C8.C22, C2×C4○D4, C56, C2×C28, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C7×Q8, C22×C14, C22×C14, D8⋊C22, C2×C56, C7×M4(2), C7×D8, C7×SD16, C7×Q16, C22×C28, C22×C28, D4×C14, D4×C14, Q8×C14, C7×C4○D4, C7×C4○D4, C14×M4(2), C7×C4○D8, C7×C8⋊C22, C7×C8.C22, C14×C4○D4, C7×D8⋊C22
Quotients: C1, C2, C22, C7, D4, C23, C14, C2×D4, C24, C2×C14, C22×D4, C7×D4, C22×C14, D8⋊C22, D4×C14, C23×C14, D4×C2×C14, C7×D8⋊C22

Smallest permutation representation of C7×D8⋊C22
On 112 points
Generators in S112
(1 79 42 22 91 71 34)(2 80 43 23 92 72 35)(3 73 44 24 93 65 36)(4 74 45 17 94 66 37)(5 75 46 18 95 67 38)(6 76 47 19 96 68 39)(7 77 48 20 89 69 40)(8 78 41 21 90 70 33)(9 111 83 54 26 103 58)(10 112 84 55 27 104 59)(11 105 85 56 28 97 60)(12 106 86 49 29 98 61)(13 107 87 50 30 99 62)(14 108 88 51 31 100 63)(15 109 81 52 32 101 64)(16 110 82 53 25 102 57)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(1 8)(2 7)(3 6)(4 5)(9 16)(10 15)(11 14)(12 13)(17 18)(19 24)(20 23)(21 22)(25 26)(27 32)(28 31)(29 30)(33 34)(35 40)(36 39)(37 38)(41 42)(43 48)(44 47)(45 46)(49 50)(51 56)(52 55)(53 54)(57 58)(59 64)(60 63)(61 62)(65 68)(66 67)(69 72)(70 71)(73 76)(74 75)(77 80)(78 79)(81 84)(82 83)(85 88)(86 87)(89 92)(90 91)(93 96)(94 95)(97 100)(98 99)(101 104)(102 103)(105 108)(106 107)(109 112)(110 111)
(2 6)(4 8)(10 14)(12 16)(17 21)(19 23)(25 29)(27 31)(33 37)(35 39)(41 45)(43 47)(49 53)(51 55)(57 61)(59 63)(66 70)(68 72)(74 78)(76 80)(82 86)(84 88)(90 94)(92 96)(98 102)(100 104)(106 110)(108 112)
(1 97)(2 98)(3 99)(4 100)(5 101)(6 102)(7 103)(8 104)(9 48)(10 41)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(17 108)(18 109)(19 110)(20 111)(21 112)(22 105)(23 106)(24 107)(25 39)(26 40)(27 33)(28 34)(29 35)(30 36)(31 37)(32 38)(49 72)(50 65)(51 66)(52 67)(53 68)(54 69)(55 70)(56 71)(57 76)(58 77)(59 78)(60 79)(61 80)(62 73)(63 74)(64 75)(81 95)(82 96)(83 89)(84 90)(85 91)(86 92)(87 93)(88 94)

G:=sub<Sym(112)| (1,79,42,22,91,71,34)(2,80,43,23,92,72,35)(3,73,44,24,93,65,36)(4,74,45,17,94,66,37)(5,75,46,18,95,67,38)(6,76,47,19,96,68,39)(7,77,48,20,89,69,40)(8,78,41,21,90,70,33)(9,111,83,54,26,103,58)(10,112,84,55,27,104,59)(11,105,85,56,28,97,60)(12,106,86,49,29,98,61)(13,107,87,50,30,99,62)(14,108,88,51,31,100,63)(15,109,81,52,32,101,64)(16,110,82,53,25,102,57), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,8)(2,7)(3,6)(4,5)(9,16)(10,15)(11,14)(12,13)(17,18)(19,24)(20,23)(21,22)(25,26)(27,32)(28,31)(29,30)(33,34)(35,40)(36,39)(37,38)(41,42)(43,48)(44,47)(45,46)(49,50)(51,56)(52,55)(53,54)(57,58)(59,64)(60,63)(61,62)(65,68)(66,67)(69,72)(70,71)(73,76)(74,75)(77,80)(78,79)(81,84)(82,83)(85,88)(86,87)(89,92)(90,91)(93,96)(94,95)(97,100)(98,99)(101,104)(102,103)(105,108)(106,107)(109,112)(110,111), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63)(66,70)(68,72)(74,78)(76,80)(82,86)(84,88)(90,94)(92,96)(98,102)(100,104)(106,110)(108,112), (1,97)(2,98)(3,99)(4,100)(5,101)(6,102)(7,103)(8,104)(9,48)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,108)(18,109)(19,110)(20,111)(21,112)(22,105)(23,106)(24,107)(25,39)(26,40)(27,33)(28,34)(29,35)(30,36)(31,37)(32,38)(49,72)(50,65)(51,66)(52,67)(53,68)(54,69)(55,70)(56,71)(57,76)(58,77)(59,78)(60,79)(61,80)(62,73)(63,74)(64,75)(81,95)(82,96)(83,89)(84,90)(85,91)(86,92)(87,93)(88,94)>;

G:=Group( (1,79,42,22,91,71,34)(2,80,43,23,92,72,35)(3,73,44,24,93,65,36)(4,74,45,17,94,66,37)(5,75,46,18,95,67,38)(6,76,47,19,96,68,39)(7,77,48,20,89,69,40)(8,78,41,21,90,70,33)(9,111,83,54,26,103,58)(10,112,84,55,27,104,59)(11,105,85,56,28,97,60)(12,106,86,49,29,98,61)(13,107,87,50,30,99,62)(14,108,88,51,31,100,63)(15,109,81,52,32,101,64)(16,110,82,53,25,102,57), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,8)(2,7)(3,6)(4,5)(9,16)(10,15)(11,14)(12,13)(17,18)(19,24)(20,23)(21,22)(25,26)(27,32)(28,31)(29,30)(33,34)(35,40)(36,39)(37,38)(41,42)(43,48)(44,47)(45,46)(49,50)(51,56)(52,55)(53,54)(57,58)(59,64)(60,63)(61,62)(65,68)(66,67)(69,72)(70,71)(73,76)(74,75)(77,80)(78,79)(81,84)(82,83)(85,88)(86,87)(89,92)(90,91)(93,96)(94,95)(97,100)(98,99)(101,104)(102,103)(105,108)(106,107)(109,112)(110,111), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63)(66,70)(68,72)(74,78)(76,80)(82,86)(84,88)(90,94)(92,96)(98,102)(100,104)(106,110)(108,112), (1,97)(2,98)(3,99)(4,100)(5,101)(6,102)(7,103)(8,104)(9,48)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,108)(18,109)(19,110)(20,111)(21,112)(22,105)(23,106)(24,107)(25,39)(26,40)(27,33)(28,34)(29,35)(30,36)(31,37)(32,38)(49,72)(50,65)(51,66)(52,67)(53,68)(54,69)(55,70)(56,71)(57,76)(58,77)(59,78)(60,79)(61,80)(62,73)(63,74)(64,75)(81,95)(82,96)(83,89)(84,90)(85,91)(86,92)(87,93)(88,94) );

G=PermutationGroup([[(1,79,42,22,91,71,34),(2,80,43,23,92,72,35),(3,73,44,24,93,65,36),(4,74,45,17,94,66,37),(5,75,46,18,95,67,38),(6,76,47,19,96,68,39),(7,77,48,20,89,69,40),(8,78,41,21,90,70,33),(9,111,83,54,26,103,58),(10,112,84,55,27,104,59),(11,105,85,56,28,97,60),(12,106,86,49,29,98,61),(13,107,87,50,30,99,62),(14,108,88,51,31,100,63),(15,109,81,52,32,101,64),(16,110,82,53,25,102,57)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(1,8),(2,7),(3,6),(4,5),(9,16),(10,15),(11,14),(12,13),(17,18),(19,24),(20,23),(21,22),(25,26),(27,32),(28,31),(29,30),(33,34),(35,40),(36,39),(37,38),(41,42),(43,48),(44,47),(45,46),(49,50),(51,56),(52,55),(53,54),(57,58),(59,64),(60,63),(61,62),(65,68),(66,67),(69,72),(70,71),(73,76),(74,75),(77,80),(78,79),(81,84),(82,83),(85,88),(86,87),(89,92),(90,91),(93,96),(94,95),(97,100),(98,99),(101,104),(102,103),(105,108),(106,107),(109,112),(110,111)], [(2,6),(4,8),(10,14),(12,16),(17,21),(19,23),(25,29),(27,31),(33,37),(35,39),(41,45),(43,47),(49,53),(51,55),(57,61),(59,63),(66,70),(68,72),(74,78),(76,80),(82,86),(84,88),(90,94),(92,96),(98,102),(100,104),(106,110),(108,112)], [(1,97),(2,98),(3,99),(4,100),(5,101),(6,102),(7,103),(8,104),(9,48),(10,41),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(17,108),(18,109),(19,110),(20,111),(21,112),(22,105),(23,106),(24,107),(25,39),(26,40),(27,33),(28,34),(29,35),(30,36),(31,37),(32,38),(49,72),(50,65),(51,66),(52,67),(53,68),(54,69),(55,70),(56,71),(57,76),(58,77),(59,78),(60,79),(61,80),(62,73),(63,74),(64,75),(81,95),(82,96),(83,89),(84,90),(85,91),(86,92),(87,93),(88,94)]])

154 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I7A···7F8A8B8C8D14A···14F14G···14X14Y···14AV28A···28L28M···28AD28AE···28BB56A···56X
order1222222224444444447···7888814···1414···1414···1428···2828···2828···2856···56
size1122244441122244441···144441···12···24···41···12···24···44···4

154 irreducible representations

dim111111111111222244
type++++++++
imageC1C2C2C2C2C2C7C14C14C14C14C14D4D4C7×D4C7×D4D8⋊C22C7×D8⋊C22
kernelC7×D8⋊C22C14×M4(2)C7×C4○D8C7×C8⋊C22C7×C8.C22C14×C4○D4D8⋊C22C2×M4(2)C4○D8C8⋊C22C8.C22C2×C4○D4C2×C28C22×C14C2×C4C23C7C1
# reps114442662424241231186212

Matrix representation of C7×D8⋊C22 in GL4(𝔽113) generated by

109000
010900
001090
000109
,
2001110
200112112
301930
300930
,
2001110
001121
300930
301930
,
1000
0100
2001120
2000112
,
158300
159800
7439098
039150
G:=sub<GL(4,GF(113))| [109,0,0,0,0,109,0,0,0,0,109,0,0,0,0,109],[20,20,30,30,0,0,1,0,111,112,93,93,0,112,0,0],[20,0,30,30,0,0,0,1,111,112,93,93,0,1,0,0],[1,0,20,20,0,1,0,0,0,0,112,0,0,0,0,112],[15,15,74,0,83,98,39,39,0,0,0,15,0,0,98,0] >;

C7×D8⋊C22 in GAP, Magma, Sage, TeX

C_7\times D_8\rtimes C_2^2
% in TeX

G:=Group("C7xD8:C2^2");
// GroupNames label

G:=SmallGroup(448,1358);
// by ID

G=gap.SmallGroup(448,1358);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-7,-2,-2,1597,4790,808,14117,7068,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^8=c^2=d^2=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,d*b*d=b^5,b*e=e*b,d*c*d=e*c*e=b^4*c,d*e=e*d>;
// generators/relations

׿
×
𝔽